
Python Data Visualization | 1

PYTHON DATA
VISUALIZATION

2019 Tools and Trends

Python Data Visualization | 2

Introduction
Having a myriad of separate
Python visualization libraries to
choose from is confusing and
likely to lead new users down
suboptimal paths.
After learning one library, it is difficult to re-learn
others that may be more suitable for later tasks. Is
there hope that Python could tell a simpler story?
Can users be steered toward a smaller number
of starting points without getting cut off from
important functionality?

This eBook is designed to help you
navigate the Python visualization
landscape. I’ll discuss the packages
currently available, how they are linked,
evolution of these tools in recent years,
and where to go from here.

James A. Bednar
Manager, Technical Services

at Anaconda, Inc.
Contributor to Datashader, GeoViews,
HoloViews, Panel, hvPlot, and Bokeh

Python Data Visualization | 2Python Data Visualization | 2

Python Data Visualization | 3

TABLE OF
CONTENTS
1. Navigating the Many Libraries

The Current Landscape

Differentiating Factors Between Viz Tools

InfoVis Libraries Breakdown

2. What Is Supported In Each Library
Plot Types

Data Size

User Interfaces and Publishing

API Types

Emerging Trends

3. Moving Toward Convergence
Image Output

Big Data

3D in Notebooks

Widget/App Support

De-facto .plot() API Standard

What Comes Next

4. Where To Go From Here
Visions for the Future

Conclusions and Outlook

Python Data Visualization | 4

CHAPTER 1

NAVIGATING THE
MANY LIBRARIES

Python Data Visualization | 4

Python Data Visualization | 5

The Current Landscape

To set the stage, this is Jake
VanderPlas’s 2017 overview
of how the many different
visualization libraries in Python
relate to each other.
Here you can see several main groups of libraries, each

with a different origin, history, and focus.

SciVis Libraries

The clearly separable group in orange towards the

middle-left of the figure is the SciVis libraries, for

visualizing physically situated data. These tools (VisPy,

glumpy, GR, Mayavi, ParaView, VTK, and yt) primarily

build on the 1992 OpenGL graphics standard, delivering

graphics-intensive visualizations of physical processes

in three or four dimensions (3D over time), for regular or

irregularly gridded data.

These libraries predate HTML5’s support for rich web

applications, generally focusing on high-performance

desktop-GUI applications in engineering or scientific

contexts.

Chapter 1 | Navigating the Many Libraries

Python Data Visualization | 6

The following breakdown by history and technology
helps explain how we got to the current profusion of
Python viz packages. It also helps explain why there
are such major differences in user-level functionality
between the various packages—specifically in the
supported plot types, data sizes, user interfaces, and
API types.

These differences make the choice of library more
than a matter of personal preference or convenience
and very important to understand.

Differentiating Factors
Between InfoVis Tools
The other libraries nearly all fall into the InfoVis group, focusing

on visualizations of information in arbitrary spaces, not necessarily

the 3D physical world. InfoVis libraries use the two dimensions

of the printed page or computer screen to make abstract spaces

interpretable, typically with axes and labels. The InfoVis libraries can
be further broken down into numerous subgroups.

Chapter 1 | Navigating the Many Libraries

The choice of library is
more than a matter of

personal preference or
convenience.

Python Data Visualization | 7

MATPLOTLIB

Released in 2003, one of the oldest
and by far the most popular of the
InfoVis libraries with a very extensive
range of 2D plot types and output
formats.

Matplotlib also predated HTML5’s support for rich web
applications, focusing instead on static images for
publication along with interactive figures using desktop-
GUI toolkits like Qt and GTK. Matplotlib includes some 3D
support, but much more limited than the SciVis libraries
provide.

JSON

As JavaScript libraries have matured
like D3, their functionality has
been captured in declarative JSON
specifications (Vega, Vega-Lite).

JSON specs make it simple to generate JavaScript plots
from any language, now including Python (via Altair and
previously via vincent). Having the full plot specification
available as portable JSON allows integration across many
types of tools.

MATPLOTLIB-BASED

A variety of tools have built on
Matplotlib’s 2D-plotting capability over
the years.

These libraries either use it as a rendering engine for
a certain type of data or in a certain domain (pandas,
NetworkX, Cartopy, yt, etc.), or provide a higher-level
API on top to simplify plot creation (ggplot, plotnine,
HoloViews, GeoViews), or extend it with additional types of
plots (seaborn, etc.).

WEBGL

Just as HTML5 did for 2D JavaScript
plotting, the WebGL standard made 3D
interactivity in the browser and Jupyter
feasible, leading to 3D in-browser
plotting built on three.js (pythreejs,
ipyvolume), vtk.js (itk-jupyter-widgets),
or regl (Plotly).

None of these newer web-based 3D approaches capture
the breadth and depth of the desktop SciVis 3D libraries,
but they do allow full integration with Jupyter notebooks
and easy sharing and remote usage via the web. Even
though WebGL tools have some applications in common
with the SciVis tools, they are probably more closely tied
with the other InfoVis tools.

JAVASCRIPT

Once HTML5 allowed rich interactivity
in browsers, many libraries arose to
provide interactive 2D plots for web
pages and in Jupyter notebooks–either
using custom JS (Bokeh, Toyplot) or
primarily wrapping existing JS libraries
like D3 (Plotly, bqplot).

Wrapping existing JS makes it easy to add new plots
created for the large JS market (as for Plotly), while using
custom JS allows defining lower level JS primitives that can
be combined into completely new plot types from within
Python (as for Bokeh).

OTHER

Many other libraries, beyond those
listed in Jake’s diagram, provide other
complementary functionality (e.g.,
graphviz for visualizing networks, or
veusz for GUI-based InfoVis plotting).

Chapter 1 | Navigating the Many Libraries

InfoVis Libraries Breakdown

Python Data Visualization | 8

CHAPTER 2

WHAT IS SUPPORTED
IN EACH LIBRARY

Python Data Visualization | 8

Python Data Visualization | 9

Plot Types

The most basic plot types are shared between multiple libraries, and others are only available in certain libraries.

Given the number of libraries, plot types, and their changes over time, it is very difficult to precisely characterize what’s supported in each library. It is
usually clear what the focus is if you look at the example galleries for each library.

Chapter 2 | What is Supported in Each Library

Statistical plots (scatter plots, lines, areas, bars, histograms)
Covered well by nearly all InfoVis libraries, but are the main focus for
Seaborn, bqplot, Altair, ggplot2, and plotnine.

Multidimensional arrays (regular grids, rectangular meshes)
Well supported by Bokeh, Datashader, HoloViews, Matplotlib, Plotly,
plus most of the SciVis libraries.

Irregular 2D meshes (triangular grids)
Well supported by the SciVis libraries plus Matplotlib, Bokeh,
Datashader, and HoloViews.

Geographical data
Matplotlib (with Cartopy), GeoViews, ipyleaflet, and Plotly.

Networks/graphs
NetworkX, Plotly, Bokeh, HoloViews, and Datashader.

3D (meshes, scatter, etc.)
Fully supported by the SciVis libraries, plus some support in Plotly,
Matplotlib, HoloViews, and ipyvolume.

Python Data Visualization | 10

Data Size
The architecture and underlying technology for each library
determine the data sizes supported, and thus whether the
library is appropriate for large images, movies, multidimensional
arrays, long time series, meshes, or other sizeable datasets.

SciVis
Can generally handle very large gridded datasets (gigabytes or
larger) using compiled data libraries and native GUI apps.

Matplotlib-based
Can typically handle hundreds of thousands of points with
reasonable performance, or more in some special cases
(depending on backend).

JSON
Without special handling, JSON’s text-based encoding of data
limits JSON-based specifications to a few thousand points up
to a few hundred thousand points, due to the file sizes and text
processing required.

JavaScript
ipywidgets, Bokeh, and Plotly all use JSON but augment it with
additional binary-data transport mechanisms so that they can
handle hundreds of thousands to millions of data points in some
cases.

WebGL
JavaScript libraries using an HTML Canvas are limited to
hundreds of thousands of points for good performance, but
WebGL allows up to millions (via ipyvolume, Plotly, and in some
cases Bokeh).

Server-side rendering
External InfoVis server-side rendering from Datashader or Vaex
allows billions, trillions, or more data points in web browsers.
This is done by converting arbitrarily large distributed or out-of-
core datasets into fixed-sized images that embed in the client
browser.

Chapter 2 | What is Supported in Each Library

Python Data Visualization | 11

Jupyter Notebooks

Most InfoVis libraries now support interactive use in Jupyter

Notebooks, with JavaScript-based plots backed by Python.

The ipywidgets-based projects provide tighter integration

with Jupyter, while some other approaches give only limited

interactivity in Jupyter (e.g., HoloViews when used with

Matplotlib rather than Bokeh).

Standalone Web-Based Dashboards and Apps

Plotly graphs can be used in separate deployable apps with

Dash, while Bokeh, HoloViews, and GeoViews can be deployed

using Bokeh Server. Most of the other InfoVis libraries can be

deployed as dashboards using the new Panel library, including

Matplotlib, Altair, Plotly, Datashader, hvPlot, Seaborn, plotnine,

and yt, with varying levels of interactivity.

Despite their web-based interactivity, the ipywidgets-based

libraries (ipyleaflet, pythreejs, ipyvolume, bqplot) are difficult to

deploy as public-facing apps because the Jupyter server allows

arbitrary code execution. See the defunct Jupyter dashboards

project, flask-ipywidgets, and voila for potential solutions.

User Interfaces and Publishing

The various libraries differ dramatically in the ways that plots

can be used.

Static Images
Most libraries can now operate headlessly to create static

images, at least in PNG and typically in smooth vector formats

like SVG or PDF.

Native GUI App

The SciVis libraries plus Matplotlib, Veusz, and Vaex can create

OS-specific GUI windows, which provide high performance

support for large data sets and integration with other desktop

applications. However, they are tied to a specific OS and usually

need to run locally rather than over the web. In some cases,

JavaScript-based tools can also be embedded in native apps by

embedding a web browser.

Export to Interactive HTML

Most of the JavaScript and JSON libraries can be operated in

a serverless mode that generates interactive plots (zooming,

panning, etc.) that can be emailed or posted on web servers

without Python available.

Chapter 2 | What is Supported in Each Library

Python Data Visualization | 12

InfoVis API types
The various InfoVis libraries offer a huge range of programming

interfaces suitable for different types of users and ways of creating

visualizations. These APIs differ by orders of magnitude in how

much code is needed to do common tasks, compared to how much

control they provide to the user for handling uncommon tasks.

The lowest-level APIs allow very detailed control for composing

primitives into new types of plots:

Declarative Graphics APIs

The Grammar of Graphics-based (GoG) libraries like ggplot,

plotnine, as well as those more loosely based on GoG like Altair,

bqplot, and Bokeh, all provide a natural way to compose low-

level graphical primitives like axes and glyphs to create a full

plot. Composing such elements is straightforward for simple

plots, but highly verbose for complex plots that contain many

such glyphs in different combinations.

Object-oriented Matplotlib API

Matplotlib’s main API allows full control and compositionality, but

it is complex and verbose even for some common tasks that are

simple with other APIs, such as creating subfigures.

JS APIs

Because many web-based Python libraries are built on an

existing JavaScript framework like D3, it is always possible to

drop down to the JS API for unusual tasks, but doing so is not

usually straightforward.

Because using these low-level APIs can be tedious and error prone

for day-to-day analysis and data exploration, alternative APIs are

also available that capture common patterns and tasks at a higher

level. Libraries generally offer a single higher-level API, except that

there are now several alternative APIs for Matplotlib and Bokeh.

For most users, the following higher-level APIs may make more

suitable starting points.

Imperative .plot() APIs

When working with high-level data structures like Pandas

dataframes or Xarray DataArrays, it is convenient to be able to

request a plot directly from the data structure using .plot(). By

default, the resulting Matplotlib-rendered plots are static (non-

interactive) and difficult to compose into larger figures, but add-on

packages are also now available using the same API to provide

interactive and in some cases fully compositional plots (via hvPlot)

for a wide range of data structures and underlying plotting libraries.

Thus users who learn the basic Pandas/Xarray .plot() API can make

use of a broad range of libraries and capability with a relatively

small investment.

Other high-level APIs

Seaborn, Chartify, Plotly Express, and similar libraries provide a

concise interface for constructing complex plots that fit certain

stereotyped patterns, automating the selection of graphical

elements for common situations like faceting and statistical

aggregation.

Chapter 2 | What is Supported in Each Library

Python Data Visualization | 13

Declarative Data-Centric APIs
With each of the above types of APIs, generating a

visualization is a one-way process of adding low-

level graphical elements (as in declarative or object-

oriented graphics APIs) or specifying additional

options to .plot(), culminating in a completed

visualization. With a data-centric API like HoloViews

or GeoViews, creating a particular visualization

consists of annotating data with additional semantic

information, such as declaring dimensions and

units. Subsequent views and aggregations or slices

of the data will then make use of this information,

making it possible to make all the data visualizable

in any combination, rather than specifically building

individual plots as needed.

Stateful Pyplot API
Matplotlib’s basic interface allows Matlab-style

imperative commands manipulating global state,

which is concise for some simple cases. However,

it is difficult for users to reason about how the

state changes, and the lack of compositionality

in the API makes it largely limited to a specific

set of supported configurations, so Pyplot and

similar approaches for other libraries are not

recommended for new users; use one of the other

high-level approaches above instead!

In practice, the various different APIs are suitable

for different technical backgrounds, preferred

Chapter 2 | What is Supported in Each Library

workflows, and desire for customization compared

to the ease of obtaining basic results. With any

of the APIs, some tasks will become easier, and

others more difficult, so it is vitally important to

choose an appropriate API.

Emerging Trends

As you can see, there is a
huge range of visualization
functionality available for
Python, with a diversity in
approach and focus that is
reflected in the large number
of libraries available.
Differences between approaches remain

important and have far-reaching implications,

meaning that users need to take these

differences into consideration before investing

deeply into any particular approach.

Luckily, trends toward convergence are helping

make it less crucial which libraries users select.

Python Data Visualization | 13

Python Data Visualization | 14

CHAPTER 3

MOVING TOWARD
CONVERGENCE

Python Data Visualization | 14

Python Data Visualization | 15

Libraries Becoming More Similar

An important theme that emerged from SciPy 2018 was

convergence–Python libraries becoming more similar in

capability as they mature over time and share ideas and

approaches.

These trends of convergence have started to erase

previous clear distinctions between each library. This is

great for users, though it makes blanket recommendations

more difficult.

As before, we will separate the SciVis projects (typically

3D plotting situated in real-world space) from InfoVis

projects (typically 2D plotting situated on the page or

screen surface with arbitrary coordinate axes).

Chapter 3 | Moving Toward Convergence

Image Output
JavaScript InfoVis libraries, like Bokeh and Plotly, have
traditionally focused on interactive use in a web browser,
and provided static output mainly as pixelated screenshots
(and only with an internet connection in the case
of Plotly).

Bokeh now supports PNG and SVG output, and Plotly
graphs can be exported to PNG, SVG, or PDF via orca.
Both libraries can now be used for publication-quality plots
like the Matplotlib derivatives produce.

Users no longer have to decide
at the outset of a project whether

they might scalable-resolution
static outputs eventually.

Python Data Visualization | 16

Chapter 3 | Moving Toward Convergence

Big Data
Extremely large InfoVis data (more than 100,000 or a million
points) previously required external Python or C data-
rendering programs like Datashader and Vaex.

Server-side data rendering has now been integrated into
several JavaScript-based libraries so that they can be
used interactively (using Vaex in bqplot and Datashader in
HoloViews, GeoViews, hvPlot, and now Plotly).

Today, there are many alternatives for working with very large
InfoVis datasets in Python.

Chapter 3 | Moving Toward Convergence

3D in Notebooks
OpenGL-based 3D libraries previously worked only in native
GUI contexts, but Mayavi now supports limited use inside
of Jupyter notebooks, making it possible to capture and
disseminate workflows more readily, and complementing
the browser-only 3D from ipyvolume and Plotly.

Widget/app support
Previous mechanisms for providing widgets and support for
apps and dashboards were often specific to Python plotting
libraries, such as Dash for Plotly and Bokeh Server/Bokeh
Widgets for Bokeh. A wide variety of plotting libraries now
support usage with ipywidgets, making it feasible to switch
between them or combine them as needed for particular
notebook-related tasks relatively easily. This broad base of
support makes the particular choice of ipywidgets-based
library less crucial at the outset of a project. Many different
plotting libraries can also be used with the new Panel app/
widget library, either using the ipywidgets-style “interact”
interface or as separate objects, either in a Jupyter
notebook or in a separate server (see example app in
the image above, which combines plots from four Python
libraries along with R’s ggplot2).

Python Data Visualization | 17

What Comes Next?
These trends towards convergence mean that users
who commit to a particular Python viz library or type of
library are no longer entirely cut off from other types of
functionality.

Although the different histories and starting points outlined
in chapter one remain important to understand, the
implications are no longer quite as severe as in previous
years.

Having so many separate Python visualization libraries to
choose from can still be confusing to new users, which is
why I and other representatives of the Python visualization
community, spent time at SciPy 2018 discussing ways to
simplify these libraries and steer users to a smaller number
of starting points.

De-facto .plot() API standard
The pandas plotting API has emerged as a de-facto standard
for 2D charts, with a similar set of calls on Pandas dataframes
now able to generate plots using Matplotlib (natively in
Pandas), Vega-lite (via pdvega), Plotly (via cufflinks), or Bokeh
(via hvPlot). hvPlot also provides the same plotting API for
many other data libraries (xarray, GeoPandas, Dask, Intake,
Streamz), making it possible for users in many cases to
learn one set of plotting commands using Pandas and then
apply them to a wide range of libraries to get either static or
interactive plots.

Chapter 3 | Moving Toward ConvergenceChapter 3 | Moving Toward Convergence

Python Data Visualization | 18

CHAPTER 4

WHERE TO GO
FROM HERE

Python Data Visualization | 18

Python Data Visualization | 19

Visions for the Future

Anaconda’s PyViz.org initiative takes the step to make data
visualization in Python easier to use and learn. HoloViews and
GeoViews now provide a single and concise high-level declarative
data API for using multiple InfoVis libraries (currently including
Bokeh, Matplotlib, Datashader, Cartopy, and Plotly), and Panel
now provides a unified dashboarding approach across dozens of
libraries and data formats.

If other InfoVis library authors support the high-level HoloViews
API, then users could easily switch between backends depending
on their immediate needs (e.g., for selecting different plot types),
without having to learn a completely new library’s API. Even
without such support, Panel already allows plots to be combined
from any of the above sources, into the same figure or dashboard.

Chapter 4 | Where To Go From Here

Perhaps we do not need
to achieve centralization
of the libraries, but rather
centralization of educational
resources that can guide users
to the appropriate libraries.

A representative of Matplotlib suggested

that the large number of existing libraries

was not necessarily an issue.

He believes it’s entirely appropriate for
Matplotlib to be the core workhorse for a
large number of libraries building on it.

Not everything needs to be in Matplotlib
itself, and Matplotlib makes an excellent
basis on which to build other, higher-level
2D static-plotting functionality, due to
its comprehensive support for low-level
primitives and output formats.

Python Data Visualization | 20

Others argue that scientific
professionals have indeed been
completely overwhelmed by the sheer
number of plotting possibilities in
Python, yet the benefit of having so
many different libraries available is
recognized.
It seems unlikely that all the separate package authors
would be able to coordinate closely, but perhaps the SciPy
community could do better at educating users on the data
models, assumptions, and outputs of each of the main
visualization tools.

For example, perhaps we do not need to achieve
centralization of the libraries, but rather centralization
of educational resources that can guide users to the

appropriate libraries. I agreed that if people were willing
to work on this, PyViz.org would be a natural place to host
such resources.

A representative of ipyvolume, bqplot, and ipywidgets
argued that ipywidgets (aka Jupyter widgets) is already
emerging as a de facto standard, supported by a wide
range of libraries (ipyvolume, ipyleaflet, pythreejs, bqplot,
and Plotly) that can now be mixed and matched as needed
to provide interactive apps and plots in a Jupyter notebook.

A representative of Mayavi emphasized that mature
SciVis tools like VTK, Mayavi, or ParaView cover important
functionality not addressed by InfoVis-focused libraries,
offering advanced and specialized visualization techniques
for large and complex finite-element-method simulations.

These tools support visualization of a variety of data
structures and the “long tail” of scientific research beyond
just the initial visualization itself.

Chapter 4 | Where To Go From Here

Python Data Visualization | 21

Conclusions and
Outlook
Overall, it is clear that each of the main
libraries represents a vibrant community
of users and developers using different
techniques to achieve different goals.
It is both unlikely and perhaps undesirable for the libraries to
consolidate significantly because that would remove major
differences in functionality. Any unification efforts would likely be
distressing to some users of libraries not included in those efforts.

In any case, we can clearly do better at educating the public about
how each library and initiative is most useful, steering users more
efficiently into effective solutions for their various goals.

In particular, users need to consider the type
of plots they want to use, the data sizes they
work with, how they want to interact with and
publish their plots, and what type of API they
want (focusing on high-level capabilities or
low-level control).

Library authors can help make these
differences clear for each project, steering
users towards appropriate solutions for their
needs. Hopefully this eBook helps clarify the
situation a bit!

Python Data Visualization | 21

Conclusions and Outlook

Python Data Visualization | 22

READY TO SCALE DATA SCIENCE
WITHIN YOUR ORGANIZATION?

Anaconda Enterprise enables data science teams to
build, train, test, and deploy AI and machine learning

models at speed and scale. Simultaneously, the
platform fulfills IT governance and security needs by
securing open source supply chains with a private

package repository.

Learn more at anaconda.com/enterprise.

