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Introduction
Having a myriad of separate 
Python visualization libraries to 
choose from is confusing and 
likely to lead new users down 
suboptimal paths.
After learning one library, it is difficult to re-learn 
others that may be more suitable for later tasks. Is 
there hope that Python could tell a simpler story? 
Can users be steered toward a smaller number 
of starting points without getting cut off from 
important functionality? 

This eBook is designed to help you 
navigate the Python visualization 
landscape. I’ll discuss the packages 
currently available, how they are linked, 
evolution of these tools in recent years, 
and where to go from here.

James A. Bednar
Manager, Technical Services 

at Anaconda, Inc.
Contributor to Datashader, GeoViews, 
HoloViews, Panel, hvPlot, and Bokeh
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CHAPTER 1

NAVIGATING THE 
MANY LIBRARIES
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The Current Landscape 

To set the stage, this is Jake 
VanderPlas’s 2017 overview 
of how the many different 
visualization libraries in Python 
relate to each other.
Here you can see several main groups of libraries, each 

with a different origin, history, and focus. 

SciVis Libraries

The clearly separable group in orange towards the 

middle-left of the figure is the SciVis libraries, for 

visualizing physically situated data. These tools (VisPy, 

glumpy, GR, Mayavi, ParaView, VTK, and yt) primarily 

build on the 1992 OpenGL graphics standard, delivering 

graphics-intensive visualizations of physical processes 

in three or four dimensions (3D over time), for regular or 

irregularly gridded data. 

These libraries predate HTML5’s support for rich web 

applications, generally focusing on high-performance 

desktop-GUI applications in engineering or scientific 

contexts.

Chapter 1 | Navigating the Many Libraries
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The following breakdown by history and technology 
helps explain how we got to the current profusion of 
Python viz packages. It also helps explain why there 
are such major differences in user-level functionality 
between the various packages—specifically in the 
supported plot types, data sizes, user interfaces, and 
API types. 

These differences make the choice of library more 
than a matter of personal preference or convenience 
and very important to understand.

Differentiating Factors   
Between InfoVis Tools
The other libraries nearly all fall into the InfoVis group, focusing 

on visualizations of information in arbitrary spaces, not necessarily 

the 3D physical world. InfoVis libraries use the two dimensions 

of the printed page or computer screen to make abstract spaces 

interpretable, typically with axes and labels. The InfoVis libraries can 
be further broken down into numerous subgroups.

Chapter 1 | Navigating the Many Libraries

The choice of library is 
more than a matter of 

personal preference or 
convenience.
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MATPLOTLIB

Released in 2003, one of the oldest 
and by far the most popular of the 
InfoVis libraries with a very extensive 
range of 2D plot types and output 
formats.

Matplotlib also predated HTML5’s support for rich web 
applications, focusing instead on static images for 
publication along with interactive figures using desktop-
GUI toolkits like Qt and GTK. Matplotlib includes some 3D 
support, but much more limited than the SciVis libraries 
provide.

JSON

As JavaScript libraries have matured 
like D3, their functionality has 
been captured in declarative JSON 
specifications (Vega, Vega-Lite).

JSON specs make it simple to generate JavaScript plots 
from any language, now including Python (via Altair and 
previously via vincent). Having the full plot specification 
available as portable JSON allows integration across many 
types of tools.

MATPLOTLIB-BASED

A variety of tools have built on 
Matplotlib’s 2D-plotting capability over 
the years.

These libraries either use it as a rendering engine for 
a certain type of data or in a certain domain (pandas, 
NetworkX, Cartopy, yt, etc.), or provide a higher-level 
API on top to simplify plot creation (ggplot, plotnine, 
HoloViews, GeoViews), or extend it with additional types of 
plots (seaborn, etc.).

WEBGL

Just as HTML5 did for 2D JavaScript 
plotting, the WebGL standard made 3D 
interactivity in the browser and Jupyter 
feasible, leading to 3D in-browser 
plotting built on three.js (pythreejs, 
ipyvolume), vtk.js (itk-jupyter-widgets), 
or regl (Plotly).

None of these newer web-based 3D approaches capture 
the breadth and depth of the desktop SciVis 3D libraries, 
but they do allow full integration with Jupyter notebooks 
and easy sharing and remote usage via the web. Even 
though WebGL tools have some applications in common 
with the SciVis tools, they are probably more closely tied 
with the other InfoVis tools. 

JAVASCRIPT

Once HTML5 allowed rich interactivity 
in browsers, many libraries arose to 
provide interactive 2D plots for web 
pages and in Jupyter notebooks–either 
using custom JS (Bokeh, Toyplot) or 
primarily wrapping existing JS libraries 
like D3 (Plotly, bqplot). 

Wrapping existing JS makes it easy to add new plots 
created for the large JS market (as for Plotly), while using 
custom JS allows defining lower level JS primitives that can 
be combined into completely new plot types from within 
Python (as for Bokeh). 

OTHER

Many other libraries, beyond those 
listed in Jake’s diagram, provide other 
complementary functionality (e.g., 
graphviz for visualizing networks, or 
veusz for GUI-based InfoVis plotting).

Chapter 1 | Navigating the Many Libraries

InfoVis Libraries Breakdown
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CHAPTER 2

WHAT IS SUPPORTED 
IN EACH LIBRARY
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Plot Types 

The most basic plot types are shared between multiple libraries, and others are only available in certain libraries.

Given the number of libraries, plot types, and their changes over time, it is very difficult to precisely characterize what’s supported in each library. It is 
usually clear what the focus is if you look at the example galleries for each library.

Chapter 2 | What is Supported in Each Library

Statistical plots (scatter plots, lines, areas, bars, histograms) 
Covered well by nearly all InfoVis libraries, but are the main focus for 
Seaborn, bqplot, Altair, ggplot2, and plotnine.

Multidimensional arrays (regular grids, rectangular meshes) 
Well supported by Bokeh, Datashader, HoloViews, Matplotlib, Plotly, 
plus most of the SciVis libraries.

Irregular 2D meshes (triangular grids) 
Well supported by the SciVis libraries plus Matplotlib, Bokeh, 
Datashader, and HoloViews.

Geographical data 
Matplotlib (with Cartopy), GeoViews, ipyleaflet, and Plotly.

Networks/graphs 
NetworkX, Plotly, Bokeh, HoloViews, and Datashader.

3D (meshes, scatter, etc.) 
Fully supported by the SciVis libraries, plus some support in Plotly, 
Matplotlib, HoloViews, and ipyvolume.
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Data Size
The architecture and underlying technology for each library 
determine the data sizes supported, and thus whether the 
library is appropriate for large images, movies, multidimensional 
arrays, long time series, meshes, or other sizeable datasets.

SciVis 
Can generally handle very large gridded datasets (gigabytes or 
larger) using compiled data libraries and native GUI apps.

Matplotlib-based 
Can typically handle hundreds of thousands of points with 
reasonable performance, or more in some special cases 
(depending on backend).

JSON 
Without special handling, JSON’s text-based encoding of data 
limits JSON-based specifications to a few thousand points up 
to a few hundred thousand points, due to the file sizes and text 
processing required.

JavaScript 
ipywidgets, Bokeh, and Plotly all use JSON but augment it with 
additional binary-data transport mechanisms so that they can 
handle hundreds of thousands to millions of data points in some 
cases.

WebGL 
JavaScript libraries using an HTML Canvas are limited to 
hundreds of thousands of points for good performance, but 
WebGL allows up to millions (via ipyvolume, Plotly, and in some 
cases Bokeh).

Server-side rendering 
External InfoVis server-side rendering from Datashader or Vaex 
allows billions, trillions, or more data points in web browsers. 
This is done by converting arbitrarily large distributed or out-of-
core datasets into fixed-sized images that embed in the client 
browser.

Chapter 2 | What is Supported in Each Library
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Jupyter Notebooks 

Most InfoVis libraries now support interactive use in Jupyter 

Notebooks, with JavaScript-based plots backed by Python. 

The ipywidgets-based projects provide tighter integration 

with Jupyter, while some other approaches give only limited 

interactivity in Jupyter (e.g., HoloViews when used with 

Matplotlib rather than Bokeh).

Standalone Web-Based Dashboards and Apps 

Plotly graphs can be used in separate deployable apps with 

Dash, while Bokeh, HoloViews, and GeoViews can be deployed 

using Bokeh Server. Most of the other InfoVis libraries can be 

deployed as dashboards using the new Panel library, including 

Matplotlib, Altair, Plotly, Datashader, hvPlot, Seaborn, plotnine, 

and yt, with varying levels of interactivity.

Despite their web-based interactivity, the ipywidgets-based 

libraries (ipyleaflet, pythreejs, ipyvolume, bqplot) are difficult to 

deploy as public-facing apps because the Jupyter server allows 

arbitrary code execution. See the defunct Jupyter dashboards 

project, flask-ipywidgets, and voila for potential solutions.

User Interfaces and Publishing

The various libraries differ dramatically in the ways that plots 

can be used.

Static Images 
Most libraries can now operate headlessly to create static 

images, at least in PNG and typically in smooth vector formats 

like SVG or PDF.

Native GUI App 

The SciVis libraries plus Matplotlib, Veusz, and Vaex can create 

OS-specific GUI windows, which provide high performance 

support for large data sets and integration with other desktop 

applications. However, they are tied to a specific OS and usually 

need to run locally rather than over the web. In some cases, 

JavaScript-based tools can also be embedded in native apps by 

embedding a web browser.

Export to Interactive HTML 

Most of the JavaScript and JSON libraries can be operated in 

a serverless mode that generates interactive plots (zooming, 

panning, etc.) that can be emailed or posted on web servers 

without Python available.

Chapter 2 | What is Supported in Each Library
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InfoVis API types
The various InfoVis libraries offer a huge range of programming 

interfaces suitable for different types of users and ways of creating 

visualizations. These APIs differ by orders of magnitude in how 

much code is needed to do common tasks, compared to how much 

control they provide to the user for handling uncommon tasks. 

The lowest-level APIs allow very detailed control for composing 

primitives into new types of plots:

Declarative Graphics APIs 

The Grammar of Graphics-based (GoG) libraries like ggplot, 

plotnine, as well as those more loosely based on GoG like Altair, 

bqplot, and Bokeh, all provide a natural way to compose low-

level graphical primitives like axes and glyphs to create a full 

plot. Composing such elements is straightforward for simple 

plots, but highly verbose for complex plots that contain many 

such glyphs in different combinations.

Object-oriented Matplotlib API 

Matplotlib’s main API allows full control and compositionality, but 

it is complex and verbose even for some common tasks that are 

simple with other APIs, such as creating subfigures.

JS APIs 

Because many web-based Python libraries are built on an 

existing JavaScript framework like D3, it is always possible to 

drop down to the JS API for unusual tasks, but doing so is not 

usually straightforward. 

Because using these low-level APIs can be tedious and error prone 

for day-to-day analysis and data exploration, alternative APIs are 

also available that capture common patterns and tasks at a higher 

level. Libraries generally offer a single higher-level API, except that 

there are now several alternative APIs for Matplotlib and Bokeh.  

For most users, the following higher-level APIs may make more 

suitable starting points.

Imperative .plot() APIs 

When working with high-level data structures like Pandas 

dataframes or Xarray DataArrays, it is convenient to be able to 

request a plot directly from the data structure using .plot(). By 

default, the resulting Matplotlib-rendered plots are static (non-

interactive) and difficult to compose into larger figures, but add-on 

packages are also now available using the same API to provide 

interactive and in some cases fully compositional plots (via hvPlot) 

for a wide range of data structures and underlying plotting libraries. 

Thus users who learn the basic Pandas/Xarray .plot() API can make 

use of a broad range of libraries and capability with a relatively 

small investment.

Other high-level APIs 

Seaborn, Chartify, Plotly Express, and similar libraries provide a 

concise interface for constructing complex plots that fit certain 

stereotyped patterns, automating the selection of graphical 

elements for common situations like faceting and statistical 

aggregation. 

Chapter 2 | What is Supported in Each Library
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Declarative Data-Centric APIs
With each of the above types of APIs, generating a 

visualization is a one-way process of adding low-

level graphical elements (as in declarative or object-

oriented graphics APIs) or specifying additional 

options to .plot(), culminating in a completed 

visualization. With a data-centric API like HoloViews 

or GeoViews, creating a particular visualization 

consists of annotating data with additional semantic 

information, such as declaring dimensions and 

units. Subsequent views and aggregations or slices 

of the data will then make use of this information, 

making it possible to make all the data visualizable 

in any combination, rather than specifically building 

individual plots as needed.

Stateful Pyplot API
Matplotlib’s basic interface allows Matlab-style 

imperative commands manipulating global state, 

which is concise for some simple cases. However, 

it is difficult for users to reason about how the 

state changes, and the lack of compositionality 

in the API makes it largely limited to a specific 

set of supported configurations, so Pyplot and 

similar approaches for other libraries are not 

recommended for new users; use one of the other 

high-level approaches above instead!

In practice, the various different APIs are suitable 

for different technical backgrounds, preferred 

Chapter 2 | What is Supported in Each Library

workflows, and desire for customization compared 

to the ease of obtaining basic results. With any 

of the APIs, some tasks will become easier, and 

others more difficult, so it is vitally important to 

choose an appropriate API. 

Emerging Trends

As you can see, there is a 
huge range of visualization 
functionality available for 
Python, with a diversity in 
approach and focus that is 
reflected in the large number 
of libraries available.
Differences between approaches remain 

important and have far-reaching implications, 

meaning that users need to take these 

differences into consideration before investing 

deeply into any particular approach.

Luckily, trends toward convergence are helping 

make it less crucial which libraries users select.

Python Data Visualization | 13
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CHAPTER 3

MOVING TOWARD 
CONVERGENCE
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Libraries Becoming More Similar 

An important theme that emerged from SciPy 2018 was 

convergence–Python libraries becoming more similar in 

capability as they mature over time and share ideas and 

approaches. 

These trends of convergence have started to erase 

previous clear distinctions between each library. This is 

great for users, though it makes blanket recommendations 

more difficult.

As before, we will separate the SciVis projects (typically 

3D plotting situated in real-world space) from InfoVis 

projects (typically 2D plotting situated on the page or 

screen surface with arbitrary coordinate axes).

Chapter 3 | Moving Toward Convergence

Image Output
JavaScript InfoVis libraries, like Bokeh and Plotly, have 
traditionally focused on interactive use in a web browser, 
and provided static output mainly as pixelated screenshots 
(and only with an internet connection in the case 
of Plotly).

Bokeh now supports PNG and SVG output, and Plotly 
graphs can be exported to PNG, SVG, or PDF via orca. 
Both libraries can now be used for publication-quality plots 
like the Matplotlib derivatives produce. 

Users no longer have to decide 
at the outset of a project whether 

they might scalable-resolution 
static outputs eventually.
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Chapter 3 | Moving Toward Convergence

Big Data
Extremely large InfoVis data (more than 100,000 or a million 
points) previously required external Python or C data-
rendering programs like Datashader and Vaex.

Server-side data rendering has now been integrated into 
several JavaScript-based libraries so that they can be 
used interactively (using Vaex in bqplot and Datashader in 
HoloViews, GeoViews, hvPlot, and now Plotly). 

Today, there are many alternatives for working with very large 
InfoVis datasets in Python.

Chapter 3 | Moving Toward Convergence

3D in Notebooks
OpenGL-based 3D libraries previously worked only in native 
GUI contexts, but Mayavi now supports limited use inside 
of Jupyter notebooks, making it possible to capture and 
disseminate workflows more readily, and complementing 
the browser-only 3D from ipyvolume and Plotly.

Widget/app support
Previous mechanisms for providing widgets and support for 
apps and dashboards were often specific to Python plotting 
libraries, such as Dash for Plotly and Bokeh Server/Bokeh 
Widgets for Bokeh. A wide variety of plotting libraries now 
support usage with ipywidgets, making it feasible to switch 
between them or combine them as needed for particular 
notebook-related tasks relatively easily. This broad base of 
support makes the particular choice of ipywidgets-based 
library less crucial at the outset of a project. Many different 
plotting libraries can also be used with the new Panel app/
widget library, either using the ipywidgets-style “interact” 
interface or as separate objects, either in a Jupyter 
notebook or in a separate server (see example app in 
the image above, which combines plots from four Python 
libraries along with R’s ggplot2).
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What Comes Next?
These trends towards convergence mean that users 
who commit to a particular Python viz library or type of 
library are no longer entirely cut off from other types of 
functionality.

Although the different histories and starting points outlined 
in chapter one remain important to understand, the 
implications are no longer quite as severe as in previous 
years. 

Having so many separate Python visualization libraries to 
choose from can still be confusing to new users, which is 
why I and other representatives of the Python visualization 
community, spent time at SciPy 2018 discussing ways to 
simplify these libraries and steer users to a smaller number 
of starting points.

De-facto .plot() API standard
The pandas plotting API has emerged as a de-facto standard 
for 2D charts, with a similar set of calls on Pandas dataframes 
now able to generate plots using Matplotlib (natively in 
Pandas), Vega-lite (via pdvega), Plotly (via cufflinks), or Bokeh 
(via hvPlot). hvPlot also provides the same plotting API for 
many other data libraries (xarray, GeoPandas, Dask, Intake, 
Streamz), making it possible for users in many cases to 
learn one set of plotting commands using Pandas and then 
apply them to a wide range of libraries to get either static or 
interactive plots. 

Chapter 3 | Moving Toward ConvergenceChapter 3 | Moving Toward Convergence
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CHAPTER 4

WHERE TO GO
FROM HERE

Python Data Visualization | 18



Python Data Visualization | 19

Visions for the Future 

Anaconda’s PyViz.org initiative takes the step to make data 
visualization in Python easier to use and learn. HoloViews and 
GeoViews now provide a single and concise high-level declarative 
data API for using multiple InfoVis libraries (currently including 
Bokeh, Matplotlib, Datashader, Cartopy, and Plotly), and Panel 
now provides a unified dashboarding approach across dozens of 
libraries and data formats.

If other InfoVis library authors support the high-level HoloViews 
API, then users could easily switch between backends depending 
on their immediate needs (e.g., for selecting different plot types), 
without having to learn a completely new library’s API. Even 
without such support, Panel already allows plots to be combined 
from any of the above sources, into the same figure or dashboard.

Chapter 4 | Where To Go From Here

Perhaps we do not need 
to achieve centralization 
of the libraries, but rather 
centralization of educational 
resources that can guide users 
to the appropriate libraries.

A representative of Matplotlib suggested 

that the large number of existing libraries 

was not necessarily an issue.

He believes it’s entirely appropriate for 
Matplotlib to be the core workhorse for a 
large number of libraries building on it. 

Not everything needs to be in Matplotlib 
itself, and Matplotlib makes an excellent 
basis on which to build other, higher-level 
2D static-plotting functionality, due to 
its comprehensive support for low-level 
primitives and output formats.
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Others argue that scientific 
professionals have indeed been 
completely overwhelmed by the sheer 
number of plotting possibilities in 
Python, yet the benefit of having so 
many different libraries available is 
recognized.
It seems unlikely that all the separate package authors 
would be able to coordinate closely, but perhaps the SciPy 
community could do better at educating users on the data 
models, assumptions, and outputs of each of the main 
visualization tools.

For example, perhaps we do not need to achieve 
centralization of the libraries, but rather centralization 
of educational resources that can guide users to the 

appropriate libraries. I agreed that if people were willing 
to work on this, PyViz.org would be a natural place to host 
such resources.

A representative of ipyvolume, bqplot, and ipywidgets 
argued that ipywidgets (aka Jupyter widgets) is already 
emerging as a de facto standard, supported by a wide 
range of libraries (ipyvolume, ipyleaflet, pythreejs, bqplot, 
and Plotly) that can now be mixed and matched as needed 
to provide interactive apps and plots in a Jupyter notebook.

A representative of Mayavi emphasized that mature 
SciVis tools like VTK, Mayavi, or ParaView cover important 
functionality not addressed by InfoVis-focused libraries, 
offering advanced and specialized visualization techniques 
for large and complex finite-element-method simulations.

These tools support visualization of a variety of data 
structures and the “long tail” of scientific research beyond 
just the initial visualization itself.

Chapter 4 | Where To Go From Here
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Conclusions and
Outlook
Overall, it is clear that each of the main 
libraries represents a vibrant community 
of users and developers using different 
techniques to achieve different goals.
It is both unlikely and perhaps undesirable for the libraries to 
consolidate significantly because that would remove major 
differences in functionality. Any unification efforts would likely be 
distressing to some users of libraries not included in those efforts.

In any case, we can clearly do better at educating the public about 
how each library and initiative is most useful, steering users more 
efficiently into effective solutions for their various goals.

In particular, users need to consider the type 
of plots they want to use, the data sizes they 
work with, how they want to interact with and 
publish their plots, and what type of API they 
want (focusing on high-level capabilities or 
low-level control).

Library authors can help make these 
differences clear for each project, steering 
users towards appropriate solutions for their 
needs. Hopefully this eBook helps clarify the 
situation a bit!
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READY TO SCALE DATA SCIENCE 
WITHIN YOUR ORGANIZATION?

Anaconda Enterprise enables data science teams to 
build, train, test, and deploy AI and machine learning 

models at speed and scale. Simultaneously, the 
platform fulfills IT governance and security needs by 
securing open source supply chains with a private 

package repository. 

Learn more at anaconda.com/enterprise.


